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Abstract: A mathematical problem is given to a student, related to closed paths of light, or equivalently to periodic trajectories in a closed billiard. The student's theoretical treatment of the problem and his computer assisted treatment reveal a Theoretical-Computational Conflict. The student's behavior in front of this conflict is described, with its multiplication of technical actions before stopping and trying to have a theory-based solution. Finally the causes of the conflict are discussed, together with the benefits obtained by the solution.
I. Introduction
The mathematics taught at the Jerusalem College of Technology (JCT) is mathematics for engineers. It happens often that students wish to learn more mathematics and ask for teacher assistance. Mathematical discovery beyond classroom is valuable for these students and incite them to go forwards in their own Zone of Proximal Development (Vygotsky 1978). "Technology  can be  used  to compute,  ...,  to reinforce,  clarify, anticipate,  or  get  acquainted  with  ideas,  and  to  discover  and investigate phenomena'' (Selden 2005).  Computer assisted investigations are often used for the discovery of new mathematics and for building new knowledge. Dana-Picard (2005) showed how a Computer Algebra System (CAS) helps students to discover and study topics beyond their current mathematical knowledge. Anticipation can incite them to proceed faster throughout the course syllabus.  But at what extent is it reasonable to rely on the computer's answer? How can the user be sure that the computer output is "right", that his/her conjectures are acceptable, that the conclusions drawn on the computer output are correct? When working in parallel within two different frames, either theoretical or numerical hand-work on the one hand, and computer assisted work on the other hand (we refer to Artigue's double reference, 2002), the answers can be different, sometimes incompatible, leading to a theoretical-computational conflict (Giraldo et al. 2003).
The usage of a Computer Algebra System (CAS) leads to a theoretical-computational conflict when the computer output is in contradiction with the results of the theoretical part of the work. Dana-Picard  and Kidron  (2005) describe  examples of differential equations for which  the graphical  output  can mislead  the  interpretation of  the results, either  because it is not  complete or because  it shows more than  it  ought  to. The pixelisation and a double transfer from continuous to discrete and back to continuous are responsible for the conflict. The superfluous appearances or the lack of appearance reveal special phenomena, either of purely graphical nature or of algebraic/analytic nature. Dana-Picard et al. (2007) analyze the conflict presented by plots of some functions of two real variables: the first plots, with "ordinary" commands of the CAS, are in contradiction with the theoretical knowledge and the experience of the students.  The conflict comes from the discretization of the domain for the sake of interpolation.  The   solution of   the conflict requires   a strong understanding of continuity and discontinuity, and requires a change of coordinates for the software not to mask discontinuities. The conflict acts as a motivating constraint, as described by Dana-Picard (2006).
In the present paper we show a conflict provoked by features inherent to the computer, independent from the CAS. The core issue is that a computer is a "rational device", and there exist problems in Mathematics whose solution is irrational (see Tall 1993). 
The activities that we describe use undergraduate theorems, learnt in courses like Real Analysis and Ring Theory (ideals, polynomials), with an addition from Geometric Optics (reflection law). The  goal is  to find closed  paths  of  light   trapped  in  a  closed  plane curve,  or equivalently,  periodic  trajectories  of a  plane  billiard (see Tabachnikoff 1995). The existence of such periodic trajectories in a strictly convex billiard is ensured by a theorem proved by Birkhoff (1927). It belongs to a more advanced course, but the proposed activities may give undergraduate students an opportunity to anticipate on their current knowledge, to discover applications of Mathematics and to unveil new horizons. 

For the computer assisted part of the work, two different packages have been used, a software named CoCoA, freely downloadable from the Web, and Maple 9.5. The theorems underlying the algorithms can be found in the book by Adams and Loustaunau (1994). 
II. The conflict.
When  light hits  a  mirror, it  is  reflected so  that  the angle  of incidence  is equal  to the  angle of  reflection, these  angles being measured  between the  incident  (resp. the  reflected)  path and  the normal  to the  mirror at  the reflection  point, as  shown  in Figure 1.
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                     Figure 1: 


         Successive reflection points
              on a convex curve

	Let D be a connected plane domain, whose border is a Fermat curve C of degree 4, i.e. a curve whose equation is
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. A beam of light moves along a straight line until it meets the border C; when it hits the mirror, the beam is reflected according to the reflection law for light. Let 
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   be three  successive   points   of  reflection, as in Figure 1 (for a general curve C); the reflection law at  
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is encoded in the equality 
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normal vector to C at
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.  Using Cartesian coordinates, the angles in this equation are expressed by scalar products. Within a few steps this equation can be translated into a polynomial equation with integer coefficients. Together  with the equation of C,  the reflection equations form a system of  
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 polynomial equations, whose solutions determine closed paths of light. 

Let us describe briefly the solution process. The polynomial equations are  viewed  as  the  generators  of some  ideal  I  in  a (commutative)  polynomial  ring.   These  generators  are  transformed into  a new  generating set, called  a Gröbner basis of I .  If a suitable ordering on the variables has been chosen, the last polynomial in this basis contains (hopefully) only  one variable,  the  previous one  contains  one or  two, and  so on. The solutions are then computed by successive substitutions. Think of a generalization to non linear equations of the Gauss-Jordan method used for a system of linear equations.

This example was the topic of an enrichment activity given to a student named Yinon. His mathematical background was already rich, beyond the requirements of the current syllabi in his engineering department, because of personal interest in Mathematics. He had also a good CAS literacy. At the first meeting, Yinon asked: "Please give me something interesting to do; our math classes are not enough for me." His teacher proposed him to work on billiards and explained him what this topic is about. Yinon wished to begin with an example for which the solution is already known, and only later to work out an open problem. He learnt and worked on his own, and reported from time to time to the teacher, not in real time but at a weekly meeting.

First Yinon built a path with 4 vertices trapped in the given curve, without using a CAS (Figure 2). As a second question he was asked to build a triangle of light trapped in the Fermat curve with a side parallel to a coordinate axis.  He proved quickly the existence of a solution. Then he tried to find explicit values for the coordinates of the reflection points using a CAS. 
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Figure 2: A path found by

Yinon's in the Fermat curve

He entered the set of polynomials describing the required path and entered a command to compute a Gröbner basis. The output of the algorithm was a basis containing only the constant polynomial 1, i.e. the computer claimed that the ideal I   was equal to the whole of the polynomial ring. This means that there is no solution to the given problem. Yinon was confused: where has the solution disappeared? Yinon thought that he could have made a mistake with the input and began the computer work from scratch. The same answer was obtained. 
At this step, Yinon said: "Maybe with another software I"ll obtain a better answer". He tried … and obtained the same answer. Now he stopped the manipulations and asked friends and educators in order to understand what happens (he called this "to think more theoretically"). After a couple of days he met his teacher and said proudly: "I have it! Our problem is Fermat's Last Theorem". The teacher asked a few questions, and it appeared that Yinon understood the origin of the conflict: in order to use a Gröbner bases package, the user defines the polynomial ring in which the work will be performed. The offered possibilities include polynomials over the field Q of rational numbers, but not over the field R of real numbers. "As the solutions we are looking for are irrational, the computer cannot see them", Yinon said. Finally, the teacher showed to Yinon the numerical solution.  
During the conversation, the teacher asked Yinon whether or not he met already such a situation, where a theorem ensures the existence of the solution for a given question, but the CAS could hardly computed it. After a while, Yinon answered that he remembered the solution of an equation of degree 3 over the real numbers. The existence of at least one real solution is yielded by a generalization of the Intermediate Value Theorem, but his calculator could not give a precise answer, only an approximation.   Yinon's final remark on his present work was: "I understand that exactly the same situation would occur for degree 6, 8, etc." (He meant Fermat curves with these degrees).
III. Real mathematics and rational computer
The existence of a solution to the given problem is ensured by a general theorem, but this solution is occulted by the computer.   This is neither a consequence of a plotting problem,   such as   a pair   discretization-interpolation,   nor a consequence of the need to display on the screen a discrete set of points (which may be invisible). It occurs because of the structure of computers and their internal representation of rational and irrational numbers (floating point, etc.).

D. Tall (1993) studies the visualization of irrational numbers using computers which actually work with rational numbers only. He focuses on functions like the one defined by 
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otherwise. In this example, the function is given by two different formulas, according to the variable being either rational or irrational. The graphical representation provided by the computer is identical to a hand-made drawing: the user draws two lines, the actual graph of the function being included in the union of the two lines, with a built-in impossibility to have a better drawing.  The way proposed there is to build the graph by a dynamical process;   the    distinction   between   what    the   author   calls pseudo-rationals and   pseudo-irrationals is made clear during the process, but disappears by the end.   As a side effect, such a visualization process requires programming skills from the user, not simple usage skills of the CAS. Of course, many other functions exist with similar behavior, revealing the difficulty to apprehend irrationals with a computer.
In our problem here, we have one set of equations. Paper-and-pencil work   and   computer assisted computations   seem to give   totally   different information.  Actually, they have two goals, different but concurrent:

· Paper-and-pencil work: derive a mathematical proof of the existence of a solution.
· CAS-assisted part of the work: find an actual construction of a solution.

The teacher led Yinon to distinguish the two parts, in order for him not to rely too strongly on the CAS output, but to have a theoretical basis for the existence of a solution, before the CAS assisted work. The components mentioned above are generally the constituents of mathematical theorems: existence and uniqueness. Several theorems have both components, such as the theorem on the solution of a quadratic equation over the real numbers. Other ones ensure only existence of a solution, such as theorems on monotonous and bounded sequences, or as the Intermediate Value Theorem, in use here. Note that students meet at junior High-School an existence and uniqueness theorem, namely for solving quadratic equations over the real numbers. But at that time, they do not distinguish clearly the two parts of the theorem. Sometimes, they even compute the "solutions' using the well-known formulas and only afterwards they question their existence.
In fact, the conflict is not a classical opposition paper-and-pencil work vs. CAS assisted computations, manual skills vs technological skills. The paper-and-pencil part of the work is conceptual and theoretical: the existence of a solution is proved, based on the application of an existence theorem. The CAS assisted part of the work also relies strongly on theoretical knowledge. The uniqueness part of the proof should be a detailed construction of a solution, from which it is clear that the solution is unique. 
As a consequence of the conflict between the theoretical result and the computer output, the student had to perform the following steps:

· Compare the results.
· Try to have a more profound insight into both processes, the paper-and-pencil one (theory) and the CAS assisted one;
· Solve the apparent contradiction;
· Dispatch the final answer in as complete a way as possible, either analytic or graphical.

In order to have a more profound insight into both processes, Yinon used a method proposed by Adams and Loustaunau (1994). The simplest algorithm to transform a given generating set of an ideal in a commutative polynomial ring into a Gröbner basis is called Buchberger algorithm. Recall that the desired construction was to find a triangle of light trapped in the given closed Fermat curve with a side parallel to the x-axis. For symmetry reasons, the question could be translated into a small system of equations and the students could run the algorithm "by hand". Without mentioning it clearly, Yinon worked over the real field, and that could yield a positive answer, unlike the CAS output.
Because of the requirements, Yinon looked for points on a Fermat curve, the vertices of a triangle of light, which cannot be three points among those whose coordinates are 
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. Fermat Last Theorem ensures that there exists no other point on C whose both coordinates are rationals. Therefore, each point of the solution has at least one irrational coordinate. As the computer does not work with irrational numbers, but only with rational approximations of the irrationals, the algorithms at work did not see the solution of the given problem.
Giraldo et al. (2003) define theoretical-computational conflicts as situations in which a computational representation is apparently contradictory to the associated theoretical formulation.  The best known examples are built on apparent contradictions between an algebraic result and a graphical representation obtained with a CAS.  This is not what happens here:  we have an example of a theoretical-computational conflict where the computational part is not graphical but algebraic. There is no graphical visualization. A profound mathematical insight is necessary, using a theorem from Advanced Mathematics.

Maybe the surprise evoked in the previous section should not have been a surprise, at least for the educator? According to Tall and Vinner's terminology (1981), we would say that Yinon's concept-image of an irrational number was not so clear at the beginning of his work. These numbers were not part of his regular world.  Sometimes because of the way  students  have  been  taught  for  long  years,  they  know  that irrational  numbers exist, but they  are  not very  present in  their ordinary world, including their mathematical courses. Using Zazkis's terminology (2005), we will say that students (and teachers?) have often only an opaque representation for irrationals. 
Moreover a misuse of the word ``number'' misleads students. There exist integers, rationals, irrationals,   complex, etc... All   these are numbers. Therefore the word ``number'' should always be associated with an adjective.  For example ``the set of all the numbers'' is not well-defined, ``the set of all the real numbers'' is. An educator should always mention explicitly which numbers are involved in the problem he/she considers and explains. But this is not always done.

Here the Intermediate Value Theorem is valid over a suitable interval in the set of real numbers.  The student can verify the hypotheses of the theorem, but without mentioning explicitly that real numbers are involved.  Actually in his/her mental representation, he/she thinks often about rationals.  Recall that real numbers are continuously dispatched along "the number line", but rationals are not. As a  consequence, as the  differences between these two different kinds  of real numbers are  not very clear in  his/her mind, the contradiction  between the  theoretical result  and the  CAS graphical representation is not  obvious and remains opaque  for him/her. Yinon understood alone the situation, but for another student the teacher's intervention could be necessary. Recall Monaghan's point of view (2004): teaching in a computerized environment does not transform the teacher in a mere facilitator; the educative tasks are changed, but not canceled.
The appearance of a theoretical-computational conflict may lead the student to multiply technical tasks with the CAS (such an issue has been studied by Trouche, 2004). Yinon did it, but quickly decided that this would not solve his problem and tried "to think theoretically". This means that the conflict had no narrowing effect on Yinon's conceptual understanding. On the contrary, Yinon converted it positively and afforded a more profound understanding (see Giraldo et al. 1993).
Misconceptions about irrational numbers must be taken in account by educators. And much before students get acquainted with advanced questions like the one posed to Yinon. Nevertheless, a theoretical-computational conflict may act as a motivating constraint and yield an opportunity to enrich concept images, beyond the immediate goal of the present activity.
IV. Final remarks

An Excellence Program exists at JCT. A student accepted in this program is associated with a faculty member for joint work. Yinon did not apply for being officially accepted in the program, but asked for joint work with the author. Another student, accepted in the Excellence Program, works on a "neighboring" topic, namely closed trajectories of a polygonal dual billiard (see Tabachnikoff 1994). Both students discover Mathematics beyond the official syllabus. Yinon uses Analysis and Algebra, the second student applies Linear Algebra (matrices) to Geometry. Both have good CAS literacy, but use different systems than the author. This is not an obstacle; it helps to unveil common behaviors of the software packages and the teacher can observe differences in the students' mathematical behaviors and how their own choice of a CAS helps them to proceed in their own Zone of Proximal Development (Vygotsky 1978). Self-teaching and personal lab activities with CAS are widely encouraged. The teacher provides scaffolding (see Noss and Hoyles 1996, page 107) to each student separately, and the contribution of each student to his friend's learning process is important. Work is going on and will be reported in a subsequent note. 
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