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In a constructivist perspective, each learner has to discover new knowledge 
on his or her own. The learner creates hypotheses in order to explain ‘facts’. 
Since the discovery of new knowledge alone does not guarantee certainty, the 
hypothetical knowledge has to be verified. This paper presents a theoretical 
framework which allows analysing the processes of discovering and verify-
ing knowledge and the coherences between these processes, so that it is pos-
sible to analyse the creativity, the plausibility and the needs for proof of a 
discovery. The theoretical framework is based on the concept of abduction, 
as described by Charles S. Peirce. He elaborated abduction as the third ele-
mentary inference, besides deduction and induction. While the process of 
forming hypotheses will be described by abduction, the different processes of 
reasoning and proofing will be described by deduction and induction. The 
empirical reconstruction of classroom communication has been used to 
elaborate the theoretical concepts for the research in mathematics education. 
An example will be used to illustrate the reconstruction. 

1. Introduction 

For the entire mathematician’s experience on the coherence be-
tween discoveries and verifications, there is still a lack concern-
ing the theoretical framework which can explain these coher-
ences. Whereas formal logic or the pattern of Toulmin (cf. 
Krummheuer 1995, Schwarzkopf 2000) have often been used to 
analyse arguments and proofs, there seem to be no specific pat-
terns in use for analysing processes of discovering knowledge. 
The American philosopher Charles Sanders Peirce elaborated 
abduction as the third elementary inference, besides deduction 
and induction. While abduction is a conceptual tool for analys-
ing processes of discovering knowledge, induction and deduc-
tion and their combinations refer to (empirical and theoretical) 
processes of verifying knowledge. 
In mathematics education the notion of abduction has already 
been a) considered from a theoretical point of view (cf. Hoff-
mann 1999) and b) used for the justification of the researcher’s 
interpretations of classroom interaction (e.g. Voigt 1984). 



2. Abduction 

In the course of his philosophy Peirce offered several different 
and contradictory patterns and descriptions of abduction. In his 
later theory he defines the “definitive logical form” as follows: 

 
Figure 1: Peirce’s description of abduction (Peirce, CP 5.189) 

Hempel and Oppenheim postulated that every scientific explana-
tion has “to contain at least on general rule” and has “to be in-
ferable from the explanation pure logically” (Stegmüller 1976, 
p. 452). Altogether we get the following patterns of abduction: 

 
Figure 2: General patterns of abduction (left: the cognitive ‘flash of 

genius’; right: abduction as process of making a hypothesis plausible) 

Starting with the observing of a surprising fact, we notice a rea-
son which can explain our recognition: A general rule leads to a 
case, which can explain the facts. If we are aware of the rule the 
observed fact appears as a specific result of it. This is a neces-
sary condition for the fact getting its ‘logical status’ as a result. 
The rule occurs tentatively. It could be that another rule was 
causal for the given facts. Other cases could be consequences 
from another rule. Thus abduction is only a hypothetical infer-
ence and has nothing to do with “logical inference” in the sense 
of mathematical formal logic. 
The case of an abduction is entirely contained in the rule. So if 
we are aware of the rule, we are also aware of the case. There-
fore we have to differentiate between the abduction as the cogni-
tive process of finding an explanatory rule and case, and the 
abduction as a communicative act by which we make our hy-
pothesis plausible. The cognitive process starts with only one 
given premise – the result. This ‘flash of genius’ can obviously 
not be interpreted by the scientist. 
The existence of only one given fact indicates that we abduc-
tively infer not only a case. Also rules can be generated abduc-
tively. If a new rule emerges by this inference, Eco (1983, p. 

“The surprising fact, C, is observed; 
 But if A were true, C would be a matter of course, 
 Hence, there is reason to suspect that A is true.”  
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207) calls the abduction “creative”. “Undercoded“ or “over-
coded” abductions consist in the explanation of given facts by 
already known rules. If the association of the known rule is 
“given automatically or semiautomatically” he classes the ab-
duction “overcoded” (Eco 1983, p. 207). Thus the generation of 
one discovery can imply a) a new case (all kinds of abduction), 
b) the relationship between the observed facts and the associated 
or the generated rule (all kinds of abduction) and c) a new rule 
(by a creative abduction). As these aspects can only be hypo-
thetical at first place, they have to be verified in the next step. 

3. Empirical ways of verification 

In his later philosophy Peirce defines abduction, deduction and 
induction as three steps in the process of inquiry. Having abduc-
tively conjectured a hypothesis we deduce necessary and prob-
able experiential consequences from it. These consequences can 
be tested. The outcome of the test is the result of the following 
induction by which the hypothesis can be confirmed or refuted 
(CP 8.209). Two empirical ways can be differentiated: A hypo-
thetical rule emerges from a given set of examples. Another ex-
ample can be used to verify the rule. Carrier (2000, p 44) calls 
this empirical way of verification the “bootstrap model”. The 
(similar) cases, which are used to deduce a necessary conse-
quence, remain within the “boarders” of the generated or associ-
ated rule. A discovered arithmetical rule can also be confirmed 
by testing its geometrical consequences. Carrier (2000, p 44) 
calls this way of verification the “hypothetic-deductive ap-
proach”. Compared with the “bootstrap-model” another rule is 
used (within the deduction) to draw a consequence from the 
hypothesis (cf. Meyer 2007, pp. 63). 

4. Theoretical ways of verification 

The abduction is a hypothetical inference. It is essential for dis-
coveries and also for the explorative phase of finding the idea 
for a proof. Empirical ways can only make a hypothesis more 
plausible. Thus Mathematicians often favour deductive proofs. 
So a theoretical way of verification consists in proving the hypo-
thetical rule and/or the hypothetical case of the abduction deduc-
tively. The rule of the abduction becomes the result of a follow-
ing (chain of) deduction(s). But how do we find the proof? Up to 
now we have only one given premise: The rule of the abduction 
as the result of the deduction. We have to ‘step back’ to find a 
rule (of the deduction) which can be used to infer the rule (of the 



abduction). Accordingly we are in need of another abduction. 
Thus finding the idea of a proof also requires abductions. 
There is a problem concerning the verification of the abduc-
tively conjectured coherence of the result and the rule of an ab-
duction. This coherence can not be proven deductively. It can 
not precluded that another rule was causal for the observed facts. 
Empirical ways of verification are not special for empirical sci-
ence. They are also important for the learning of mathematics. 
So Jahnke (2007, p. 79; cf. Hanna und Jahnke 1996) centred his 
article “[…] around the idea that inventing hypotheses and test-
ing their consequences is more productive for the understanding 
of the epistemological nature of proof than forming elaborate 
chains of deduction.” The logical structures of the empirical 
ways of verification corroborate this idea and give an insight in 
the coherences between empirical and theoretical ways of verifi-
cation. The verification of knowledge by the hypothetical-
deductive approach can be compared with a deductive proof of 
the hypothesis: Both ways of verification are in need of another 
(abductively conjectured) rule. While the rule of the proof has to 
precede the abduction logically, the rule of the deduction within 
the hypothetical-deductive approach succeeds the abduction – 
not only temporally but also logically.  

5. An example of the analyses of classroom communication 

In order to show the use of the presented theoretical framework, 
we will now consider a short example how the framework can 
be activated for analysing real classroom interaction. 
The scene will be interpreted from an ethnomethodological and 
interactional point of view. It emerged from the first lesson of a 
classroom experiment in a grade 10 (students aged from 16 to 17 
years). The lesson was dedicated to the introduction of the 
power functions. Students’ preknowledge comprised the parab-
ola and the calculation with x to the power of n. Now the stu-
dents should complete “ x a    “ for the dashed function on their 
working sheet (fig. 3).  
 
 
 

 
Figure 3: Given functions on the working 

sheet (“Achse” is the German word for 

“axis”) 



The students first could not solve the task. The teacher offers 
them the following suggestions: 2 210 , 0,1 ,x x x x⋅ ⋅a a  

2 510, , 2xx x x x x+a a a . Now we take a closer look on 
Eva’s statement: 

maybe it could be something with ehm, for my sake 4
x  or like 

that because, eh the, the eh (soft spoken) no it is nonsense 4
x  

(teacher writes 
4

x xa  on the blackboard, Eva speaks up) as 
4

x  because eh, if you insert, than eh, a negative number for x, 
eh there will come something positive out of eh, of the, of the 
function as ehm, on the, x-axis eh so if you are now right eh 
from the point of origin, (teacher point at the point of origin) 
than there still has to be a ehm, still ehm, thus still a positive 
eh result so that you actually can get high elsewise you have to 
go deeper if eh if there, is 5

x  for my sake you can, so minus 
times minus is plus, than another time minus times minus is 
again plus and than, another time minus times minus is yeah eh 
minus, so you would land in the range of the negative numbers 
and than the graph would drop down. 

I would interpret this scene as follows: Eva assumes that the 
dashed graph can be the graph of the function 4

x xa . She re-
fers her hypothesis to the course of the graph1. So we get the 
following abduction: 

 
Figure 4: The abduction concerning Eva’s statement 

As power functions with exponents greater than 2 had not been 
discussed before, this scene is an example how students set up 
new rules by a creative abduction. Eva did not mention the rule 
of her abduction explicitly, though she used it implicitly. Her 
following argument can be separated in two parts:  
The first part can be interpreted as a deductive proof of the im-
plicit rule of the abduction: Starting with n

x xa  (n even) Eva 
deduces by multiplying x successively with itself, that the pro-
duct has to be positive, if x is any negative number. In another 

                                                 
1  By the way: Eva mentioned “right eh from the point of origin“. In the fol-

lowing course of the lesson she is going to correct herself. 

result:  The graph runs upwards for negative values of x. 
rule: If the term has the form n

x  (n even), than the corre-
sponding graph will run upwards. 

case: The term of the graph could be “something with” 4
x . 

 



step she infers that the corresponding graph has to run upwards. 
In detail three deductions can be reconstructed in this section 
(cf. Meyer 2007, pp. 197). Nearly everything of this proof re-
mains implicit. That Eva is aware of it can be interpreted by the 
second part of her argument. Here she expresses a nearly analo-
gous argument for odd exponents in n

x xa . 
The function of her argument in the second part can be inter-
preted in different ways as a proof of the case of the abduction. 
Every possibility is in need of the assumption that the term in 
question is of the form n

x :  1. The argument can be regarded as 
a proof by contradiction, when we assume that Eva implicitly 
compares the deduced course of the graph with the given graph. 
2. Eva’s statement could be a proof by contradiction for the 
converse direction of the implication. Thus the rule of abduction 
turns into a statement of equivalence and the case of the abduc-
tion can be inferred from the result of the abduction deductively. 
3. As she infers the consequences for n being even or odd, we 
can assume that Eva does a complete case differentiation. 
The reconstruction shows that the process of discovering knowl-
edge starts with only one given premise. In this scene the stu-
dents first could not use this premise to execute their abduction. 

With the mention of 5
x xa  the teacher gave them a hint, which 

Eva grasped. The hint of the teachers can be interpreted as a 
reduction of the semantic fields between the result and the case 
of the abduction. Thus a creative abduction can be forced from 
outside. Even though the hint of the teacher has been given be-
fore, the concept of abduction shows that the students have to 
notice the coherence between the case and the result. 
Within the reconstruction it has not been possible to determine 
the relevance of the second part of Eva’s argument for the proof 
the case of her abduction. Comparable problems emerged within 
the reconstruction of other scenes. The reconstruction shows that 
it is not only problematic to differentiate between a) different 
theoretical ways of verification and b) theoretical and empirical 
ways of verification. The decision can depend on implicit as-
sumptions of the student. 

6. Future prospects 

In this article I described the inference abduction, its relations to 
deduction and induction and gave a short insight into the analy-
ses of classroom interaction. Together with J. Voigt I have also 
used the patterns to analyse mathematical school books. One 



result of the analyses is the following: In a school book below 
the picture (fig. 5) there is the task: “Formulate a rule which 
helps you – only by calculating the sum of digits of a number – 
to make a statement on the divisibility of this number by 3 or 9”.  

 
Figure 5: Excerpt from a mathematical school book (Esper and 

Schornstein 2006, p. 137) 

It is still a problem that students often do not see the idea of a 
proof. Tasks like this may be an alternative: In order to find a 
rule the students are only confronted with the calculation in the 
figure. So this could be taken as the result of the (creative) ab-
duction by which the students should generate the required rule. 
Every step in figure 5 can be reconstructed as a deduction. Thus 
the concrete result is getting inferred by a chain of deductions. If 
these deductions are going to be generalized, it could be possible 
to proof the abductively conjectured rule with these deductions. 
In other words: The task is an example of what we call “discov-
ery with a latent idea of proof”. The idea is latent because the 
students have to notice it. But this is of course not self-evident. 

7. Final remarks 
Peirce’s differentiation between abduction and induction allows 
a detailed analysis of processes of discoveries, verifications and 
their coherences. The abduction gives an insight in the processes 
of discovering knowledge and also in the processes of finding an 
idea for a proof. The combinations of the inferences give an 
insight in the processes of verifying hypothetical knowledge. 
Let us go back to the claims from the beginning: The representa-
tion of an abduction enables the recognition of their rationality 
and plausibility. Eco’s types of abductions show the creativity of 
discoveries and also their needs of proofs. The reconstruction of 
verifications as being empirical or theoretical allows grasping 
their conclusiveness and their potential persuasive power. How-
ever, the persuasive power is always subjectively. E.g.: In the 
following, here not documented course of the lesson, the stu-
dents showed that they were not convinced by Eva’s solution. 
They asked for examples (see also Fishbein 1982, p. 16). The 



analyses show that the “power of the best argument” must not 
depend on logical conclusiveness. 
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